Search results for "molecular dynamic"

showing 10 items of 1090 documents

Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor

2020

The intensive use of pesticides has led to their increasing presence in water, soil, and agricultural products. Mounting evidence indicates that some pesticides may be endocrine disrupting chemicals (EDCs), being therefore harmful for the human health and the environment. In this study, three pesticides, glyphosate, thiacloprid, and imidacloprid, were tested for their ability to interfere with estrogen biosynthesis and/or signaling, to evaluate their potential action as EDCs. Among the tested compounds, only glyphosate inhibited aromatase activity (up to 30%) via a non-competitive inhibition or a mixed inhibition mechanism depending on the concentration applied. Then, the ability of the thr…

aromatasemedicine.drug_classHealth Toxicology and Mutagenesislcsh:MedicineEstrogen receptorMixed inhibitionEndocrine Disruptors010501 environmental sciencesPharmacology01 natural sciencesArticle03 medical and health scienceschemistry.chemical_compoundImidaclopridReceptorsmedicineHumansAromataseestrogenic activity030304 developmental biology0105 earth and related environmental sciences0303 health sciencesAromatase inhibitorendocrine disrupting chemicalbiologyAromatase Inhibitorslcsh:RPublic Health Environmental and Occupational HealthEstrogenspesticidesPesticideThiaclopridEstrogenmolecular dynamicsReceptors EstrogenchemistryEstrogenMELN allosteric inhibitionbiology.proteingene reporter assayAromatase; Endocrine disrupting chemical; Estrogen receptor; Estrogenic activity; Gene reporter assay; MELN allosteric inhibition; Molecular dynamics; Neonicotinoids; Pesticides; Aromatase; Aromatase Inhibitors; Estrogens; Humans; Receptors Estrogen; Endocrine Disruptors; Pesticidesneonicotinoidsestrogen receptorInternational Journal of Environmental Research and Public Health
researchProduct

Conformations and orientational ordering of semiflexible polymers in spherical confinement.

2017

Semiflexible polymers in lyotropic solution confined inside spherical nanoscopic “containers” with repulsive walls are studied by molecular dynamics simulations and density functional theory, as a first step to model confinement effects on stiff polymers inside of miniemulsions, vesicles, and cells. It is shown that the depletion effects caused by the monomer-wall repulsion depend distinctly on the radius R of the sphere. Further, nontrivial orientational effects occur when R, the persistence length ℓp, and the contour length L of the polymers are of similar magnitude. At intermediate densities, a “shell” of wall-attached chains is forming, such that the monomers belonging to those chains a…

Persistence lengthchemistry.chemical_classificationQuantitative Biology::BiomoleculesMaterials scienceShell (structure)General Physics and Astronomy02 engineering and technologyRadiusPolymer021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Soft Condensed MatterMolecular dynamicschemistry.chemical_compoundCrystallographyARTICLESMonomerchemistryChemical physics0103 physical sciencesLyotropicDensity functional theoryPhysical and Theoretical Chemistry010306 general physics0210 nano-technologyThe Journal of chemical physics
researchProduct

Seeking the Source of Catalytic Efficiency of Lindane Dehydrochlorinase, LinA.

2020

Herein we present the results of an in-depth simulation study of LinA and its two variants. In our analysis, we combined the exploration of protein conformational dynamics with and without bound substrates (hexachlorocyclohexane (HCH) isomers) performed using molecular dynamics simulation followed by the extraction of the most frequently visited conformations and their characteristics with a detailed description of the interactions taking place in the active site between the respective HCH molecule and the first shell residues by using symmetry-adapted perturbation theory (SAPT) calculations. A detailed investigation of the conformational space of LinA substates has been accompanied by desc…

biologyChemistryActive siteLyasesInteraction energyLigand (biochemistry)Molecular mechanicsArticleSurfaces Coatings and FilmsMolecular dynamicsBacterial ProteinsComputational chemistryCatalytic DomainMaterials Chemistrybiology.proteinMoleculePhysical and Theoretical ChemistryPerturbation theoryPotential of mean forceHexachlorocyclohexaneThe journal of physical chemistry. B
researchProduct

Functionally relevant electric-field induced perturbations of the prosthetic group of yeast ferrocytochrome c mutants obtained from a vibronic analys…

2006

We have measured the low temperature (T = 20 K) absorption spectra of the N52A, N52V, N52I, Y67F, and N52AY67F mutants of ferrous Saccharomyces cerevisiae (baker's yeast) cytochrome c. All the bands in the Q0- and Q(v)-band region are split, and the intensity distributions among the split bands are highly asymmetric. The spectra were analyzed by a decomposition into Voigtian profiles. The spectral parameters thus obtained were further analyzed in terms of the vibronic coupling model of Schweitzer-Stenner and Bigman (Schweitzer-Stenner, R.; Bigman, D. J. Phys. Chem. B 2001, 7064-7073) to identify parameters related to electronic and vibronic perturbations of the heme macrocycle. We report th…

Porphyrinsporphyrin coreAbsorption spectroscopyCytochromebiologyChemistrySpectrum AnalysisCytochromes cSaccharomyces cerevisiaeMolecular physicsSpectral lineSurfaces Coatings and FilmsCold Temperaturechemistry.chemical_compoundMolecular dynamicsVibronic couplingnickelElectricityNormal modeElectric fieldMaterials Chemistrybiology.proteinPhysical and Theoretical ChemistryAtomic physicsHemeThe journal of physical chemistry. B
researchProduct

Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition …

2017

Extensive molecular dynamics simulations reveal that the interactions between proteins and poly(ethylene glycol) (PEG) can be described in terms of the surface composition of the proteins. PEG molecules accumulate around non-polar residues while avoiding the polar ones. A solvent-accessible-surface-area model of protein adsorption accurately fits a large set of data on the composition of the protein corona of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles recently obtained by label-free proteomic mass spectrometry.

Materials scienceNanoparticleProtein Corona02 engineering and technologyMolecular Dynamics Simulation010402 general chemistry01 natural sciencesPolyethylene Glycolschemistry.chemical_compoundMolecular dynamicsAdsorptionPolymer chemistryPEG ratioHumansMoleculeGeneral Materials ScienceAmino Acidstechnology industry and agricultureBlood Proteins021001 nanoscience & nanotechnology0104 chemical scienceschemistryNanoparticlesProtein CoronaAdsorption0210 nano-technologyEthylene glycolProtein adsorptionNanoscale
researchProduct

Dynamics of weak interactions in the ligand layer of meta-mercaptobenzoic acid protected gold nanoclusters Au68(m-MBA)32 and Au144(m-MBA)40

2020

Atomically precise metal nanoclusters, stabilized and functionalized by organic ligands, are emerging nanomaterials with potential applications in plasmonics, nano-electronics, bio-imaging, nanocatalysis, and as therapeutic agents or drug carriers in nanomedicine. The ligand layer has an important role in modifying the physico-chemical properties of the clusters and in defining the interactions between the clusters and the environment. While this role is well recognized from a great deal of experimental studies, there is very little theoretical information on dynamical processes within the layer itself. Here, we have performed extensive molecular dynamics simulations, with forces calculated…

chemistry.chemical_classificationMaterials scienceDouble bondLigandHydrogen bond02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanoclustersMolecular dynamicschemistryChemical physicsCluster (physics)NanomedicineGeneral Materials ScienceDensity functional theory0210 nano-technologyNanoscale
researchProduct

Pearl-necklace structures of molecular brushes with rigid backbone under poor solvent conditions: A simulation study

2010

Bottle-brush polymers, where flexible side chains containing N=20 to 50 effective monomers are grafted to a rigid backbone, are studied by molecular dynamics simulations, varying the grafting density σ and the solvent quality. Whereas for poor solvents and large enough σ the molecular brush is a cylindrical object, homogeneous in axial direction, for intermediate values of σ an axially inhomogeneous structure of "pearl-necklace" type is formed. The "pearls," however, have a strongly nonspherical ellipsoidal shape, due to the fact that several side chains cluster together in one pearl, qualitatively consistent with predictions of Sheiko et al. [Eur. Phys. J. E 13, 125 (2004)] We analyze the …

chemistry.chemical_classificationMaterials scienceMolecular StructurePolymersTemperatureGeneral Physics and AstronomyPolymerMolecular Dynamics Simulationchemistry.chemical_compoundMolecular dynamicsMonomerChain (algebraic topology)chemistryChemical physicsComputational chemistrySolventsCluster (physics)Side chainCylinderPhysical and Theoretical ChemistryAxial symmetryThe Journal of Chemical Physics
researchProduct

Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

2017

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hy…

MultidisciplinarySum-frequency generationMaterials scienceBilayerTransition temperatureSum frequency generationSurface meltingWaterNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral line0104 chemical sciencesMolecular dynamicsChemical physicsCommentariesMelting pointStepwise0210 nano-technologySpectroscopyCrystalline iceLayer (electronics)Proceedings of the National Academy of Sciences
researchProduct

The importance of vibronic perturbations in ferrocytochrome c spectra: a reevaluation of spectral properties based on low-temperature optical absorpt…

2005

We have measured and analyzed the low-temperature (T=10 K) absorption spectrum of reduced horse heart and yeast cytochrome c. Both spectra show split and asymmetric Q(0) and Q(upsilon) bands. The spectra were first decomposed into the individual split vibronic sidebands assignable to B(1g) (nu15) and A(2g) (nu19, nu21, and nu22) Herzberg-Teller active modes due to their strong intensity in resonance Raman spectra acquired with Q(0) and Q(upsilon) excitations. The measured band splittings and asymmetries cannot be rationalized solely in terms of electronic perturbations of the heme macrocycle. On the contrary, they clearly point to the importance of considering not only electronic perturbati…

Quantitative Biology::BiomoleculesAbsorption spectroscopyChemistryGeneral Physics and AstronomySpectral linesymbols.namesakeMolecular dynamicsElectric fieldExcited statesymbolsVibronic spectroscopyPhysical and Theoretical ChemistryAtomic physicsRaman spectroscopyLuminescenceThe Journal of chemical physics
researchProduct

Role of image charges in ionic liquid confined between metallic interfaces.

2020

The peculiar properties of ionic liquids in confinement have not only become essential for energy storage, catalysis and tribology, but still pose fundamental questions. Recently, an anomalous liquid-solid phase transition has been observed in atomic force microscopy experiments for 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), the transition being more pronounced for metallic surfaces. Image charges have been suggested as the key element driving the anomalous freezing. Using atomistic molecular dynamics simulations, we investigate the impact of image charges on structure, dynamics and thermodynamics of [BMIM][BF4] confined between gold electrodes. Our results not only unveil…

Phase transitionRange (particle radiation)TetrafluoroborateMaterials scienceGeneral Physics and Astronomy02 engineering and technologyTribology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMetalMolecular dynamicschemistry.chemical_compoundchemistryChemical physicsvisual_artIonic liquidElectrodevisual_art.visual_art_mediumPhysical and Theoretical Chemistry0210 nano-technologyPhysical chemistry chemical physics : PCCP
researchProduct